

Firenze, 16th September 2016

Azienda Ospedalera Nazionale SS. Antonio e Biagio e Cesare Arrigo Alessandria

Marco Ladetto MD, Az Osp Santi Antonio e Biagio e Cesare Arrigo, Alessandria, Italy EU

Novita da EHA 2016 – Copenhagen

Linfomi

THREE QUESTIONS TO ADDRESS:

1. Is ASCT still the golden standard for MCL? And how to challenge it in

the future?

2. What is new in relapsed follicular lymphoma? Is benda-obinotuzumab

a major step forward? Which are the alternatives?

3. Ultra high-risk lymphoma patients: Can we identify them? And where

shall we go for treatment?

THREE QUESTIONS TO ADDRESS:

- 1. Is ASCT still the golden standard for MCL? And how to challenge it in the future?
- 2. What is new in relapsed follicular lymphoma? Is benda-obinotuzumab

a major step forward? Which are the alternatives?

3. Ultra high-risk lymphoma patients: Can we identify them? And where

shall we go for treatment?

Newly diagnosed and relapsed mantle cell lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[†]

M. Dreyling¹, C. Geisler², O. Hermine³, H. C. Kluin-Nelemans⁴, S. Le Gouill⁵, S. Rule⁶, O. Shpilberg⁷, J. Walewski⁸ & M. Ladetto⁹, on behalf of the ESMO Guidelines Working Group^{*}

Young patient (≤65)	Elderly patient (>65) First line treatment	Compromised patient		
Dose-intensified Immuno-chemotherapy (R-CHOP + R-high dose Ara-0 (alternating or sequential) =>ASCT)	Conventional Immuno-chemotherapy (e.g. R-CHOP, BR) ∳ Rituximab maintenance radioimmunotherapy	Watch and wait ? R-Chlorambucil BR		
	1. Relapse			
High tumour load: Immuno-chemotherapy (e.g. BR, R-DHAP) ↓ Allo-transplant Radioimmunotherapy Rituximab maintenance	Immuno-chemotherapy (e.g. BR, R-FC) Targeted approaches ASCT Radioimmunotherapy Rituximab maintenance	Immuno-chemotherapy (e.g. BR) Targeted approaches		
	Higher relapse			
Targeted approaches: Temsirolimus, Bortezomib*, Ibrutinib, Lenalidomide* (preferable in combination) Repeat previous therapy (long remissions)				
R, rituximab; CHOP, rituximab, cyclophosphamide, doxorubicin, vincristine, prednisolone; B, bendamustin FC, fludarabine/cyclophosphamide; ASCT, autologous stem-cell transplantation; *currently not registered this indication in the European Union (EU).				

MCL Educational session

MCL Educational session

The role of targeted treatment in mantle cell lymphoma: is transplant dead or alive?

Martin Dreyling¹ and Simone Ferrero,² on behalf of European Mantle Cell Lymphoma Network

¹Department of Medicine III, Hospital of the University LMU München, Germany; and ²Division of Hematology, Department of Molecular Biotechnologies and Health Sciences, University of Torino, Italy

Haematologica, 2016

YOUNG PATIENTS PROBABLY NOT DESERVING ASCT

roups....

Patients with major comorbidities

- Patients with limited stage MCL
- Indolent MCL
- Primary refractory patients

For specific prognet

	Author	Study Features	Evaluable patients	Therapeutic regimen	ORR% (CR%)	Median PFS (years)	Median OS (years)	Dropout rate	TRM	Secondary tumors rate
	Dreyling <i>et al.</i> , 2005 [18]	Phase III, randomized	122	R-CHOP + TBI + ASCT $\nu s.$ R-CHOP + TBI + interferon- α	98 (81) <i>US.</i> 99 (37)	3,3 <i>vs.</i> 1,4	NR (83% 3-y OS <i>Us.</i> NR (77% 3-y OS	13% <i>vs.</i> na	5% <i>vs.</i> 0%	5%
	Hermine <i>et al.</i> , 2012 [34]	Phase III, randomized	455 R	R-CHOP + TBI + ASCT <i>vs.</i> -CHOP/R-DHAP + HD-araC + ASC	98 (63) <i>US.</i> ' 99 (61)	3,8 <i>us.</i> 7,3	6,8 <i>vs.</i> NR	na	4%	na
	Damon <i>et al.</i> , 2009 [26]	Phase II	77	R-CHOP + methotrexate + HD-araC/etoposide + ASCT	88 (69)	NR (56% 5-y PFS)	NR (64% 5-y OS)	13%	3%	na
	Van't Veer <i>et al.</i> , 2009 [27]	Phase II	87	R-CHOP + HD-araC + ASCT	70 (64)	NR (36% 4-y PFS)	NR (66% 4-y OS)	30%	5%	na
	Geisler <i>et al.</i> , 2012 [39]	Phase II	160	R-Maxi-CHOP + HD-araC+ ASCT	96 (54)	7,4	NR (64% 10-y OS)	9%	5%	4%
	Delarue <i>et al.</i> , 2013 [28]	Phase II	60	R-CHOP/R-DHAP + HD-araC + ASCT	100 (96)	6,9	NR (75% 5-y OS)	18%	1,5%	18%
	Touzeau <i>et al.</i> , 2013 [29]	Retrospective	396	Different ASCT-based schedules	83 (77)	NR (67% 3-y PFS)	NR (83% 3-y OS)	na	2,5%	6%
	Kolstad <i>et al.</i> , 2014 [40]	Phase II	160	R-Maxi-CHOP + HD-araC+/- Zevalin + ASCT	94 (82)	R (71% 4-y PFS)	NR (78% 4-y OS	9%	6%	3%
	Le Gouill <i>et al.</i> , 2014 [42]	Phase III, randomized	299	R-DHAP + ASCT +/- rituximab maintenance	na (92)	R (74% 3-y PFS)	NR (83% 3-y OS	14%	na	па
	Cortelazzo <i>et al.</i> , 2015 [99]	 Phase III, randomized 	260*	R-CHOP+R-CTX+HD-araC+ASCT +/- lenalidomide maintenance	86 (78)	R (78% 2-y PFS)	NR (89% 2-y OS	22%*	2%	na
9										
eu leg	Romaguera <i>et al.</i> , 2010 [6]	Phase II, monocentric	97	R-Hyper-CVAD	97 (87)	4,6	NR (64% 10-y OS)	29%	8%	5%
	Merli <i>et al.</i> , 2012 [31]	Phase II, multicentric	60	R-Hyper-CVAD	83 (72)	R (73% 5-y PFS)	NR (61% 5-y OS)	63%	6,5%	1,5%
	Bernstein <i>et al.</i> , 2013 [32]	Phase II, multicentric	49	R-Hyper-CVAD	86 (55)	4,8	6,8	39%	2%	4%

Table 1 Published clinical studies investigating first-line dose intensified therapy in MCL

Adapted from Dreyling M and Ferrero S, 2016

MRD response after induction

Courtesy of Christiane Pott

Eskeund CW S437 15-YEAR FOLLOW-UP OF THE NORDIC MCL2-TRIAL: DESPITE LONG-TERM RESPONSES LATE RELAPSES STILL OCCUR

BACKGROUND

- Outcome of MCL has has improved thanks to Ara-C and R
- the Nordic trial showed a projected 10-year OS and PFS of 58% and 43%
- Updated results at a median follow-up of 11.4 years

METHODS

- 160 untreated stage II-IV MCL pts.
- maxi-CHOP alternated to high-dose Ara-C, BEAM/BEAC and ASCT in responders (n=145).
- Use of pre-emptive rituximab (Andersen, JCO, 2009)

RESULTS

- the median OS and PFS were 12.7 and 8.5 years.
- RD of the 145 patients who underwent ASCT was 12.4 years
- micro-RNA-18b (MIPI-B-miR) remains highly significant and identifies a high-risk group of an exceedingly poor prognosis with OS and PFS of only 1.6 and 1.0 years

CONCLUSIONS

•a pattern of continuing relapse is observed, seemingly precluding cure.

•MIPI, MIPI-B and, in particular, MIPI-B-miR remain valid prognosticators that clearly separate patients into risk groups with different outcomes.

•All risk groups might benefit from addition of novel agents.

Rule S et al S438 OS OUTCOMES IN PTS WITH MCL TREATED WITH IBRUTINIB IN A POOLED ANALYSIS OF 370 PATIENTS FROM 3 INTERNATIONAL OPEN-LABEL STUDIES

BACKGROUND

 pooled analysis from 3 ibrutinib studies (PCYC-1104, MCL2001 [SPARK] and MCL3001 [RAY])

METHODS

- ibrutinib 560 mg orally
- Inclusion and exclusion criteria were similar
- Simple descriptive statistics and exploratory analyses were done for PFS and OS with univariate and multivariate analyses

RESULTS

- 370 patients were included in this analysis; median age was 67.5 years, 94%.
- 27%, 29%, 22% had 1, 2, 3 prior lines of therapy.
- Overall response rate (ORR) was 66% (20% CR; 46% PR),
- ORR for patients with 1, 2 and ≥3 prior lines of therapy was 77%, 71% and 64%
- DOR, PFS and OS of 18.6, 12.8 and 25.0 months,
- CR pts, had a PFS of 70% and OS of 90% at 2 years.
- ECOG, sMIPI, bulky disease and blastoid histology impacts OS

CONCLUSIONS

OS is better patients who are younger and who have fewer prior lines of therapy

Ibrutinib is an effective agent in blastoid MCL to achieve a response and potentially provide a bridge transplant.

Data support the preferential use of ibrutinib after initial vs later relapse

Rule S et al P699

REAL-WORLD EXPERIENCE OF IBRUTINIB IN >700 PATIENTS WITH MANTLE-CELL LYMPHOMA: DATA FROM A GLOBAL NAMED PATIENT PROGRAM

•NPP program to allow access to ibrutinib for eligible patients R/E MCL This program provides real-world data on estimated outcomes with ibrutinib across a large, global MCL population.

Age (years)		1		HR (95% CI)	p Value
< 50		1		1.00 (1.00-1.00)	
50-54			1	1.41 (0.49-4.04)	0.519
55-59		H		1.33 (0.53-3.34)	0.549
60-64		H +		0.93 (0.39-2.23)	0.867
65-69		H		1.27 (0.55-2.92)	0.581
70-74		H		0.92 (0.40-2.11)	0.842
75-79		H		0.74 (0.32-1.76)	0.501
80-84				0.91 (0.35-2.38)	0.848
85+		-	4	1.59 (0.59-4.29)	0.364
Sex				inter derma areab	0.004
MALE		1		1.00 (1.00-1.00)	
Female		HH		1.06 (0.73-1.55)	0.764
> 3 lines of therapy					
YES		1		1.00 (1.00-1.05)	
No		1 minut		1,16 (0.81-1.66)	0.429
MCL diagnosis > 2 years					
YES				1.00 (1.00-1.00)	
No		L++		0.65 (0.46-0.92)	0.015
PD within 3 months prior	r to ibrutinit			area far to arrest	
YES				1.00(1.00-1.00)	
No		1-4-1		0.81 (0.55-1.19)	0.277
Last response CR/PR				and i farma cristi	and the
VES				1.00/1.00-1.00	
No		hand a		1.14 (0.71-1.81)	0.592
Relacse				tradition to come of	0.004
YES				1.00(1.00-1.00)	
No				1.11(0.70-1.75)	0.661
Advanced disease				the factor count	6.44.
YES				1.00(1.00-1.00)	
No				0.95/0.63-1.421	0.794
Behactory disease				was bross costs	4.194
VES				1.00/1.00-1.05	
No				0.88 (0.54-1.45)	0.627
140				0.00 (0.04-1740)	0.027
	0.1	1	10		
				Cationated LID by C	inhom we
				comated HH by C	ox model
			-	Reference category	F

Lenz G et al S439 SEQUENCE VARIANTS IN PATIENTS WITH PRIMARY AND ACQUIRED RESISTANCE TO IBRUTINIB IN THE PHASE 3 MCL3001 (RAY) TRIAL

BACKGROUND

•To identify specific mechanisms of ibrutinib resistance in MCL, and to correlate genetic signatures with patient response.

METHODS

- Primary resistance analysis,
- Acquired resistance analysis.

RESULTS

Mutations associated with primary resistance to ibrutinib were identified in NF-kB signaling pathways, both canonical (e.g., A20) and non-canonical (e.g., BIRC2). Other mutations were found in epigenetic modifiers and in the EGFR family.

Acquired resistence: Mutations in epigenetic modifiers and alternate NF-kB or PI3K/mTOR pathways were found after a short treatment duration (<4 months).

No primary or secondary BTK C481S mutations

CONCLUSIONS

Understanding both primary and acquired resistance patterns is key in order to improve outcomes and define the populations that benefit from ibrutinib treatment

THREE QUESTIONS TO ADDRESS:

1. Is ASCT still the golden standard for MCL? And how to challenge it in

the future?

2. What is new in relapsed follicular lymphoma? Is benda-obinotuzumab

a major step forward? Which are the alternatives?

3. Ultra high-risk lymphoma patients: Can we identify them? And where

shall we go for treatment?

THE GADOLIN TRIAL

	Obinutuzumab plus bendamustine (n=194)	Bendamustine monotherapy (n-202)
(Continued from previous column)		
Ritucimab-refractory type		
Rituximab plus chemotherapy	156 (80%)	157 (78%)
No response or progressive disease during or within	76/156 (49%)	86/157 (55%)
6 months after last rituximab induction dose		
Progressive disease during or within 6 months after last ritucimab maintenance dose	76/156 (49%)	70/157 (45%)
Other	4/156 (3%)	1/157 (1%)
Rituximab monotherapy	38 (20%)	45 (22%)

Data are n (%) or median (IQR), unless otherwise shown. INHL-indolent non-Hodgkin lymphoma. FLIPI-Follcular Lymphoma International Prognostic Index. *Patients not designated as grade 3 a or 3b. †Status at initial diagnosis, for patients with follicular lymphoma only. ‡One patient had a negative value because of an incorrect treatment completion date. §Patients who were refractory to ritukimab and alkylator agent in the same or separate regimens. ¶Patients who progressed more than 6 months after last ritukimab dose but within 6 months after best response, and patients whose refractory status could not be classified because of insufficient detail in case report form.

Table 1: Baseline patient demographics and disease characteristics (intention-to-treat population)

Figure 1: Trial profile

	Total (N)	n/events		Hazard ratio
		Obinutuzumab plus bendamustine (n=194)	Bendamustine monotherapy (n=202)	(95%C)
Randomisation stratification factors				
Follicular lymphoma				
Yes	321	155/54	166/90	0-49 (0-35-0-68)
No	75	39/17	36/14	0.94 (0.46-1.90)
Number of previous therapies				
«2	312	154/51	158/83	0-49 (0-34-0-69)
>2	84	40/20	44/21	0-80 (0-43-1-48)
Refractory to				
Rituximab monotherapy	83	38/14	45/22	0.55 (0.28-1.08)
Rituximab plus chemotherapy induction	162	76/29	86/42	0.59 (0.36-0.95)
Rituximab maintenance after chemotherapy induction	146	76/28	70/39	0.57 (0.35-0.93)
Demographic and baseline disease characteristics				
Sex				
Male	228	110/41	118/57	0.58 (0.39-0.87)
Female	168	84/30	84/47	0.52 (0.33-0.83)
Bulky disease at baseline				
Yes >6 cm	136	66/27	70/37	0.63 (0.38-1.04)
No.e6 cm	257	128/44	129/67	0.51 (0.35-0.75)
B symptoms at baseline (s 1)				
Yes	58	30/12	28/16	0.57 (0.27-1.22)
No	335	163/59	172/87	0.55 (0.40-0.77)
Double refractory status				
Yes	311	147/55	164/87	0.56 (0.40-0.78)
No	85	47/16	38/17	0.55 (0.28-1.10)
ECOG at baseline				
0-1	375	185/66	190/99	0.53 (0.39-0.72)
2	18	9/5	9/4	1-44 (0-39-5-41)
All patients	396	194/71	202/104	0.55 (0.40-0.74)
			0.05 0.1 0.2 0.5 1 Favours obinuturumab F plus bendamustine	2 5 10 20

Trneny M et al S440 OBINUTUZUMAB PLUS BENDAMUSTINE VERSUS BENDAMUSTINE ALONE IN PATIENTS WITH RITUXIMAB-REFRACTORY FOLLICULAR LYMPHOMA: RESULTS FROM THE GADOLIN STUDY

BACKGROUND

FL subset analysis of GADOLIN pts. 321 (81%) of 396 iNHL pts enrolled had FL.

METHODS

Pts received either G + B90 or B120

RESULTS

Median number of prior therapies was 2. 94% pts were refractory to their last prior rituximab (R)-containing regimen and 88% double-refractory to R and an alkylating agent.

According to IRC PFS is not reached in the G-B arm and 13.8 mo in the B arm (Figure 1),

Survival data were immature at the time of analysis. Safety profiles were comparable.

Parameter	FL subpopulation			
	G-B (n=155)	B (n=166)		
Median observation time (range), mo	22.08 (0.4-48.5)	20.27 (0.0-50.0)		
PFS (IRC)				
Pts with event, n (%) Median (mo) HR [95% CI]; stratified*	54 (34.8) Not reached 0.48 [0.34-0.68]	90 (54.2) 13.8		
PFS (INV)				
Pts with event, n (%) Median (mo) HR [95% Cl]; stratified*	62 (40.0) 29.2 0.48 [0.	102 (61.4) 13.7 35-0.67]		
Response [†] (IRC)				
EOI response (%): overall [‡] /CR Best response (%): overall [‡] /CR	70.5/9.4 79.7/15.7	62.6/13.5 77.0/19.3		

*Stratification factors for FL population were refractory type (R vs R-chemo) and prior therapies (≤ 2 vs >2); [†]During treatment and within 12 mo after start of treatment; [‡]Complete response (CR) or partial response.

Table 1.

Jiménez Ubieto A et al S441 ANALYSIS OF SECONDARY NEOPLASIAS AFTER HIGH DOSE THERAPY SUPPORTED BY AUTOLOGOUS STEM CELL TRANSPLANTATION IN FOLICULAR LYMPHOMA PATIENTS. A LONG TERM FOLLOW-UP ANALYSIS FROM THE GELTAMO REGISTRY.

BACKGROUND

- HDT/ASCTis effective in FL
- Secondary neoplasia is one the major cncern

To evaluate the cumulative incidence and characteristics of sMDS/sAML and solid tumors after HDT/ASCT in a very long-term follow-up analysis of FL patients.

METHODS

A total of 655 FL patients (GELTAMO registry)

RESULTS

Median follow-up 12 years. The median OS were 21.3 years from HDT/ASCT and 22.6 years from the time of FL diagnosis. 12.5% developed a second malignancy: solid tumors (47.5%), sMDS/sAML (42.5%). The accumulated incidence at 5, 10 and 15 years was 1.8%, 3.5% and 4.9% for solid tumors and 2.6%, 4.3% and 5% for sMDS/sAML. Male sex and BM as stem cell source were associated to an increased risk.

Characteristics		No.*	%	
All patients		655	100	
Median age, years (range)		47 (18-73)		
Sex: Male/ Female		330/325	50.4/ 49.6	
	Low	108	33	
FLIPI Score	Intermediate	120	36	
	High	102	31	
	Low	69	22	
FLIPI 2 Score	Intermediate	118	38	
	High	125	40	
	CR	405	62	
Disease Status at ASCT	PR	221	34	
	Refractory disease	29	4	
Anthracycline-containing first line therapy		460	76	
Fludarabine-containing first line therapy		36	6	
Only one therapy line be	fore HDT/ASCT	183	28	
Rituximab previous HDT, Yes/ No		184/436	30/70	
Conditioning Regimen TBI based, Yes/ No		109/504	17/83	
PBPC, Yes/ No		517/87	14.5/ 85.5	
Abbreviations: BM: Bone Marraw, Transplantation. HOT: High Dose Thesa a There are some missing data for seve	FLPI: Folicular Lymphonia prognatic index pp. 186. Total Body irradiation. PBPC: Periphera radvariables. No. of missing values can be direct	. CR: Complete Response.FR: Partial Ro I blood Progenitor Cells. Dy derived for each wariable by the equation	reponse. ASCT: Autologous Ster	

CONCLUSIONS

FL pts are at an increased risk of second malignancy but not as high as reported.

Low percentage of TBI and early transplant could explain these good results.

Once a secondary neoplasia is diagnosed prognosis is dismal.

the incidence of secondary neoplasia will probably not diminish the benefit of HDT/ASCT in relapsed FL.

Hatake et al P686

INTERIM ANALYSIS OF POST MARKETING SURVEILLANCE OF YTTRIUM-90 IBRITUMOMAB TIUXETAN IN JAPANESE PATIENTS WITH RELAPSED OR REFRACTORY INDOLENT B-CELL NON-HODGKIN LYMPHOMA OR MANTLE CELL LYMPHOMA.

RESULTS

413 pts enrolled. Good safety confirmed. ORR in 354 evaluable pts was 76.8%, CR rate 47.7%. ORR and CR for those receiving 2 or less prior regimens were 86.0% and 56.1% respectively, while ORR and CR for those receiving more than 2 prior regimens were 69.3% and 40.7%

CONCLUSIONS 90YITis a tolerable and efficacious treatment option for pts with R/R B-cell NHL or MCL in Japan,

It demonstrates good benefit-risk balance

Li JJ et al P317

IDELALISIB MONOTHERAPY IN RELAPSED/REFRACTORY FOLLICULAR LYMPHOMA (FL): EXPERIENCE THROUGH AN EARLY ACCESS PROGRAM IN EUROPE AND AUSTRALIA

Baseline Demography	Total
	(n=66)
FL Grade, n (%)	
1	9 (14.1)
2	32 (50)
3a	23 (35.9)
Documented	64
Missing data	2
Age, years	
Median, (range)*	66 (40-86)
Male*, n (%)	32 (48.5)
Ann Arbor stage at enrollment, n (%)	
1	2 (3.0)
JI	4 (6.1)
	19 (28.8)
IV	41 (62.1)
High risk FLIPI-2 score at enrollment, n (%)	39 (63.9)
Documented	61
Missing data	5
ECOG, n (%)	
0	24 (36.4)
1	32 (48.5)
2	10 (15.2)
3	0
Number of prior regimens, median (range)	4 (2-13)

RESULTS Results: 66 pts with refractory FL who had documented prior treatment regimens. A total of 12 pts (20%) ASCT .

With a median follow up of 109 days IDELA monotherapy was well-tolerated with 6/66 pts (9.1%) reporting an SAE.

(Febrile neutropenia, neutropenia, diarrhea, gastrointestinal inflammatory disorder, pancytopenia, progressive disease, liver enzyme elevation, hypotension and colon cancer).

CONCLUSIONS: The results confirm the acceptable tolerability profile of IDELA.

THREE QUESTIONS TO ADDRESS:

1. Is ASCT still the golden standard for MCL? And how to challenge it in

the future?

2. What is new in relapsed follicular lymphoma? Is benda-obinotuzumab

a major step forward? Which are the alternatives?

3. Ultra high-risk lymphoma patients: Can we identify them? And where

shall we go for treatment?

Casasnovas O et al S105 BASELINE TOTAL METABOLIC VOLUME (TMTV) PREDICTS THE OUTCOME OF PATIENTS WITH ADVANCED HODGKIN LYMPHOMA (HL) ENROLLED IN THE AHL2011 LYSA TRIAL.

BACKGROUND

The TMTV assessed on the baseline FDG-PET assessed prospectively in pts enrolled in a phase III randomized trial (PET-driven)

RESULTS

- follow-up of 16 months, 2y-PFS was 81% vs 93% in pts with high and low TMTV
- Using also PET-2 3 groups could be identified having a 61%, 88%, 94% 2y-PFS respectively (p<0.0001).

CONCLUSIONS

The TMTV predicts the outcome of young advanced HL pts. The combination of TMTV and PET2 allows identifying 3 subsets of HL pts

Stewart D et al S479

A BIOCLINICAL PROGNOSTIC MODEL INCORPORATING MYC AND BCL2 PREDICTS OUTCOME TO SALVAGE THERAPY IN RELAPSED/ REFRACTORY DIFFUSE LARGE B-CELL LYMPHOMA: AN NCIC CTG LY12 CORRELATIVE SCIENCE STUDY.

BACKGROUND

To determine clinical and molecular predictors of EFS and OS for rrDLBCL pts treated with R-GDP or R-DHAP followed by ASCT (Canadian Ly12 study)

METHODS

91 pts had DLBCL immunohistochemical (IHC) testing for CD10, BCL6, MUM1, FOXP1, LMO2, BCL2, CMYC, P53, pySTAT3 expression.

In addition, 97 formalin-fixed, had GEP with NanoString to evaluate Cell of Origin (COO) by the Lymph2Cx assay, as well as BCL2, MYC, P53, STAT3, PDL1 and PD1 expression.

RESULTS

• Expression of both MYC and BCL2 was associated to poor outcome. Dual expressing (DE) lymphomas (MYC+/BCL+) had significantly worse 3y EFS (0% vs 40%, p=0.0009) and OS rates (20% vs 54%, p=0.0004)

Stewart D et al S479

A BIOCLINICAL PROGNOSTIC MODEL INCORPORATING MYC AND BCL2 PREDICTS OUTCOME TO SALVAGE THERAPY IN RELAPSED/ REFRACTORY DIFFUSE LARGE B-CELL LYMPHOMA: AN NCIC CTG LY12 CORRELATIVE SCIENCE STUDY.

MYC and BCL2 expression using NanoString GEP (>1.5xmean) were significantly associated with inferior OS and EFS, and no patient who expressed both markers achieved 2y EFS or OS.

Concordance rate of 79% was seen for MYC and 57% for BCL2. In multivariate analyses, primary refractory DLBCL, LDH at relapse, MYC expression and BCL2 expression (assessed by either IHC or GEP).

CONCLUSIONS

MYC and BCL2 expression, determined by IHC or Nanostring GEP, are independent poor prognostic factors for rrDLBCL, and dual expression predicts dismal prognosis. Tchernonog E et al S788 CLINICAL CHARACTERISTICS AND PROGNOSTIC FACTORS OF IMMUNOCOMPROMISED AND NON IMMUNOCOMPROMISED PLASMABLASTIC LYMPHOMA PATIENTS: ANALYSIS OF 135 PATIENTS TREATED IN THE LYSA GROUP.

BACKGROUND

PBL remains a diagnostic and therapeutic challenge with an aggressive clinical course. Aim of this study was to specify the clinical, biological, pathological features and outcome of patients with PBL.

METHODS AND RESULTS

135 patients with PBL diagnosed after 2000 within LYSA. The median age was 58, male predominance. 56 HIV-positive patients, 17 post-transplant patients, and 62 "immunocompetent".

However also this subtype of patients may present some degree of immunodepression.

Immunophenotype showed CD138 positivity in 88% of cases and CD20 negativity in 90% of cases. EBER expression was observed in 62% of cases. Chemotherapy was administered to 108 of 135 patients, with a complete response rate of 55%.

Rituximab, had a trend towards improved CR rate. The median overall survival was 32 mos. HIV positive status showed better overall survival.

DISCUSSION

Specific guidelines to clarify all the treatment options are lacking

Festuccia M et al 796 ALLOGENEIC STEM CELL TRANSPLANTATION AND BRENTUXIMAB VEDOTIN IN RELAPSED/REFRACTORY HODGKIN LYMPHOMA: A MULTICENTER EXPERIENCE

BACKGROUND

allo-HCT has been used in RR HL with controversial results. Aim of our study is to investigate the role of allo-HCT in RR HL

METHODS

69 patients with RR HL, median age 34 (range, 18 - 64), **52 patients (75%)** were at least in PR. The remaining **16 patients (23%) had progressive** disease (non-responsive).

Brentuximab Vedotin (BV) was given as bridge to transplant in 11 patients. Moreover, 7 patients received BV after allo-HCT.

The majority of patients underwent reduced intensity allo-HCT, 64 patients (93%). MUD in 57%. The stem cells source was PB in 61 patients (88%).

RESULTS

Median OS of 5.1 years (range, 0 - 13.8) and RFS of , 1.3 years.

The 5-year cumulative incidence of treatment related mortality (TRM) and relapse were 17.7% and 43.4%, respectively.

The 5-year estimated of RFS was significantly higher in responsive compared to non-responsive patients, 46.9% versus 12.5%, respectively, p= 0.009.

Eleven patients received BV as bridge to allo-HCT for a median of 6 cycles.. All patients achieved at least PR. None of patients treated with BV had unexpected toxicity or GVHD worsening.

DISCUSSION

Allo-HCT is a feasible and effective option for RR HL.

BV showed efficacy as a bridge to allo- HCT as well as post allo-HCT rescue.

CHALLENGING HIGH-RISK PATIENTS

THANK YOU FOR YOUR ATTENTION

HAVE AN EXCITING AND FRUITFUL DISCUSSION !!!!

Azienda Ospedalera Nazionale SS. Antonio e Biagio e Cesare Arrigo Alessandria

TRIANGLE study Flow chart 5 Figure 2: Study flow chart WCL Not ASCT / Maintenance / Observation Induction Observation for progression, death and SPM until end of the Standard Arm A: R-CHOP/R-DHAP followed by ASCT study. Observation 3w 3w up to 9,5 years 3w 3w 3w 3w 6w I Experimental Arm A+I: R-CHOP/R-DHAP+I followed by ASCT and I-maintenance Randomization **Initial Staging** 560 mg Ibrutinib daily Observation for 2yrs or until progression 3w 3w 2 years 3w 3w 3w 3w 6w up to 7,5 years 1 Experimental Arm I: R-CHOP/R-DHAP + I followed by I-maintenance 560 mg Ibrutinib daily for 2 yrs <u>or</u> until progression Observation 2 years up to 7,6 years 3w 3w 314

FLAZ-12: STUDY DESIGN

rotocols in relapsed FL: Renoir

A randomized phase III multicenter trial assessing efficacy and toxicity of a combination of Rituximab and Lenalidomide (R2) vs Rituximab alone as maintenance after chemoimmunotherapy with Rituximab-Bendamustine for relapsed/refractory FL patients not eligible for autologous transplantation (ASCT).

Rituximab 375 mg/m2 day 1 q 90 days (8 cycles) Lenalidomide (10 mg dd 1-21 q 28) (24 cycles)

Rituximab 375 mg/m2 day 1 q 90 days (8 cycles)